If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-p^2+10p+5)/(p^2+5)^2=0
Domain of the equation: (p^2+5)^2!=0We multiply all the terms by the denominator
p∈R
(-p^2+10p+5)=0
We get rid of parentheses
-p^2+10p+5=0
We add all the numbers together, and all the variables
-1p^2+10p+5=0
a = -1; b = 10; c = +5;
Δ = b2-4ac
Δ = 102-4·(-1)·5
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{30}}{2*-1}=\frac{-10-2\sqrt{30}}{-2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{30}}{2*-1}=\frac{-10+2\sqrt{30}}{-2} $
| -6=3(5m-2) | | 3y/4-3y/7=1 | | 5m-8=12m+10 | | -3m+4=5m+8 | | -p^2+10p+5=0 | | 4+(2x5)=x | | 4m-6=8+2m | | 2d-2d-5=-d+1 | | x^2-14x+17x=0 | | -4x-3=-x+9 | | y+33=4y+15 | | 3(x+4=3x-11 | | (5/0)+2x=0 | | -4-3f-4=-6f+10 | | 10-5m=-7m | | 1÷6x=9 | | -16t^2+68t+15=0 | | 1/2x−3/5=3/5x−5 | | 12x−35=35x−5 | | X^4+2x-10=0 | | 3(x-1)-4(2x+3)=0 | | x2-10x-20=0 | | 2^4=(2x)^x | | s+-9.1=10.15 | | 3+5x=5+3 | | s-589=183 | | -8y=-12 | | s/27=12 | | 16j+j=10j-20 | | s=1/5•175-1= | | 20x2-27X=14 | | (9/2)^x=4^(1-x) |